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Abstract

Our goal in this work is to construct empirical confidence intervals for the fractional parameter

d in ARFIMAð0; d ; 0Þ processes. Through these confidence intervals one can compare several

estimators for d to decide which one is the best estimation method related to long memory time

series. We use a FORTRAN routine that simulates random time series to later perform an analysis for

detecting long memory. We also apply the methodology to real DNA sequences to evaluate the

efficiency of our method in the construction of these confidence intervals.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A time series is a register of values for a certain random variable, measured in different
discrete times. For instance, the daily temperature of one city measured at the same hour,
during some interval of time, where the previous measure is related to the latter one.

We shall use fX tgt2T to denote a stochastic process in time t 2 T , where T is an
index set. For each t 2 T , X t is a random variable.

Recently, many researchers in time series analysis are studying the ones with long
memory characteristics, that is, time series with significant dependence between
observations apart for a long period of time. The goal here is to use these
characteristics to construct an adequate model for the time series.
see front matter r 2005 Elsevier B.V. All rights reserved.
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According to the works [1–3], DNA sequences show long memory, and the goal
here is to properly estimate the parameter that describes this characteristic. In order
to do this, we consider the ARFIMA (autoregressive fractionally integrated moving

average) models with ðp; d; qÞ parameters where the fractional parameter d measures
the long memory property when d 2 ð0:0; 0:5Þ, and p and q are the orders of the
autoregressive and moving average processes, respectively. We shall consider five
different estimation methods for d.

This paper is organized as follows: Section 2 describes the stochastic processes
with long memory characteristic treating, particularly, the case of ARFIMAðp; d; qÞ
models. In Section 3 we present the chemical structure of a DNA sequence. An
explanation of the different estimators for d is given in Section 4. In Section 5, we
construct the empirical confidence intervals based on each estimator proposed in the
previous section. We analyze a real DNA sequence in Section 6, estimating the value
of d through the proposed estimator methods obtaining their confidence intervals.
Section 7 concludes this paper.
2. Long memory models

In this section, we present the ARFIMAðp; d; qÞ model (also called Fractional
ARIMA model) and some related theoretical results. Models that includes fractional
differentiation d in the interval ð0:0; 0:5Þ are able to represent any time series that
shows persistence, also known by long memory property (see Ref. [4] for a complete
study of these models). Initial studies of time series with long memory characteristics
were given by Hurst [5]. ARFIMA processes first appeared in Refs. [6,7] and are a
generalization of the ARMA and ARIMA models. The author of Ref. [8] was the
pioneer in the application of long memory in hydrological time series.

Persistence or long memory property has been observed in time series from
different fields such as meteorology, astronomy, hydrology, and economy. One can
characterize the persistence by two different forms:
�
 in time domain, the autocorrelation function rX ð�Þ decays hyperbolically to zero,
that is, rX ðkÞ ’ k2d�1, when k!1.

�
 in frequency domain, the spectral density function f X ð�Þ is unbounded when the
frequency is near zero, that is, f X ðwÞ ’ w�2d , when w! 0.

One of the models that can describe the persistence is the so-called ARFIMAðp; d; qÞ
processes.
2.1. ARFIMAðp; d; qÞ process
Definition 1. A stochastic process fX tgt2Z is Gaussian if, for any set of
t1; t2; . . . ; tn 2 Z, the random variables X t1 ;X t2 ; . . . ;X tn

have a n-dimensional normal
distribution.
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We observe that weakly stationary process fX tgt2Z does not need to be strongly
stationary. However, any weakly stationary Gaussian process will be also strongly
stationary (see Ref. [9]).

Definition 2. The process fetgt2Z is said to be a white noise process with zero mean
and variance s2e , denoted by et�WNð0;s2e Þ, if

EðetÞ ¼ 0; VarðetÞ ¼ Eðe2t Þ ¼ s2e ; and geðkÞ ¼
s2e ; k ¼ 0 ;

0; ka0 :

(
(1)

Definition 3. Let fetgt2Z be a white noise process with zero mean and variance s2e40,
and B the backward-shift operator, i.e., BkðX tÞ ¼ X t�k. If fX tgt2Z is a linear process
satisfying

fðBÞð1�BÞdX t ¼ yðBÞet ; t 2 Z , (2)

where d 2 ð�0:5; 0:5Þ, fð�Þ, and yð�Þ are polynomials of degree p and q, respectively,
given by

fðBÞ ¼ 1� f1B� � � � � fpB
p ,

yðBÞ ¼ 1� y1B� � � � � yqB
q ,

where fi; 1pipp, and yj ; 1pjpq, are real constants, then fX tgt2Z is called general
fractional differentiation ARFIMAðp; d; qÞ process, where d is the degree or
fractional differentiation parameter.

The term ð1�BÞd , for d 2 R, is defined through the binomial expansion

ð1�BÞd ¼
X1
k¼0

d

k

� �
ð�BÞk ¼ 1� dB�

d

2!
ð1� dÞB2 � � � .

If d 2ð�0:5; 0:5Þ, then fX tgt2Z is a stationary, and an invertible process (see
Theorem 4 below, for the case where p ¼ 0 ¼ q).

The most important characteristic of an ARFIMAðp; d; qÞ process is the property
of long dependence, when d 2 ð0:0; 0:5Þ, short dependence, when d ¼ 0, and
intermediate dependence, when d 2 ð�0:5; 0:0Þ. In this work we analyze only
processes with long memory property.

2.2. ARFIMAð0; d; 0Þ process

In this work we consider ARFIMA processes where p and q are both equal to
zero. The ARFIMAð0; d; 0Þ processes are given by

ð1�BÞdX t ¼ et; for all t 2 Z . (3)

Important properties for ARFIMAð0; d; 0Þ processes can be found in Ref. [7]. The
following theorem supplies the main properties for these processes.
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Theorem 4 (see Hosking [7]). Let fX tgt2Z be an ARFIMAð0; d; 0Þ process.
(a)
 When do0:5, fX tgt2Z is a stationary process with an infinite moving average

representation given by

X t ¼ cðBÞet ¼
X1
k¼0

cket�k ,

where

ck ¼
dð1þ dÞ � � � ðk � 1þ dÞ

k!
¼
ðk þ d � 1Þ!

k!ðd � 1Þ!
.

When k!1;ck ’ kd�1=ðd � 1Þ!.

(b)
 When d4� 0:5, fX tgt2Z is an invertible process with an infinite autoregressive

representation given by

pðBÞX t ¼
X1
k¼0

pkX t�k ¼ et ,

where

pk ¼
�dð1� dÞ � � � ðk � 1� dÞ

k!
¼
ðk � d � 1Þ!

k!ð�d � 1Þ!
.

When k!1;pk ’ k�d�1=ð�d � 1Þ!.
In items (c)–(e) below, we assume that d 2 ð�0:5; 0:5Þ.
(c)
 The spectral density function of fX tgt2Z is given by

f X ðwÞ ¼ 2 sin
w

2

� �h i�2d

; for 0owpp .

When w ’ 0, f X ðwÞ ’ w�2d .

(d)
 The autocovariance function of fX tgt2Z is given by

gX ðkÞ ¼
ð�1Þkð�2dÞ!

ðk � dÞ!ð�k � dÞ!

and the autocorrelation function is given by

rX ðkÞ ¼
ð�dÞ!ðk þ d � 1Þ!

ðd � 1Þ!ðk � dÞ!
; for all k 2 Z .

When k!1, rX ðkÞ ’ ðð�dÞ!=ðd � 1Þ!Þk2d�1.

(e)
 The partial autocorrelation function of fX tgt2Z is given by

fX ðk; kÞ ¼
d

k � d
; for all k 2 N .
Remark 5. For d40 the autocorrelation function rX ðkÞ has hyperbolic decay when
k increases, and the spectral density function is unbounded for frequencies near to
zero frequency demonstrating the capability of the model to show persistence.
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Remark 6. If fX tgt2Z is defined by expression (2), then its spectral density function is
given by

f X ðwÞ ¼ f U ðwÞ 2 sin
w

2

� �h i�2d

; for all 0owpp , (4)

where f U ð�Þ denotes the spectral density function of an ARMAðp; qÞ process, Ut,
given by

ð1�BÞdX t ¼ Ut; for all t 2 Z . (5)
3. DNA chemical structure

The DNA is the deoxyribonucleic acid. The DNA ribbons are long polymers made
of millions of nucleotides connected some to the others. Individually, nucleotides are
quite simple, consisting of three distinct parts: one of the four nitrogenized bases, a
deoxyribose (a sugar of 5 carbons), and a phosphate group.

The denomination of the nucleotides depends on the nitrogenized basis that
composes them. A DNA sequence is composed by four nucleotides called as adenine,
guanine, cytosine, and thymine, denoted by the capital letters A, G, C, and T,
respectively. (Note: In this work, the words nucleotide and basis will be used to
represent the same thing, i.e., a nucleotide.)

Adenine and guanine, a two ring composed molecules, are classified as purines.
Cytosine and thymine are classified as pyrimidines and they are molecules formed by
only one ring. One purine connects to one pyrimidine in a DNA sequence to form a
pair of bases. Adenine, and thymine are connected to each other to form a pair of
A–T bases, while guanine, and cytosine form a pair of G–C bases. The bases remain
joined for weakly hydrogen bridges, and these hydrogen bridges are responsible in
order to maintain the structure of a double helix of the DNA sequence (see Fig. 1).

3.1. Autocorrelation function in DNA sequences

It is not evident what makes the DNA sequence to present long memory
characteristics, but they do so, and this may be related to the evolution’s mechanism
since the growth of the first form of life on Earth.

When life appeared in our planet, billions of years ago, it appeared from the
random combinations in the seas in formation. Passing the time by, for natural
processes, these particles had been increasing, and combining, to generate more
complex, and adaptable organisms to the environment; this increasing or
‘‘elongation’’ occurred through the so-called oligonucleotide duplication or duplica-

tion of the genes process in which a segment was removed, and some times duplicate,
after being reinserted in the original sequence. It is clear that such process was not
perfect, and from these small mutations the evolution was made.

Introns are nucleotide sequences that do not ‘‘generate’’ proteins; in contrast with
exons, that do generate them. Sometimes called by ‘‘junk genes’’, introns seem not to
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have any function in the genetic sequence. However, nowadays the biologists have
doubts of this (see Ref. [10]), and they do believe that introns possess important
functions in the mechanism of the evolution. For unknown reasons, introns do not
suffer many changes as exons during the duplication, provoking long memory
property more evident through them. Our goal here is to study the parameter of long
memory in time series consisting by introns and exons.

3.2. Random walk

One can consider several different ways to construct a random walk from
DNA sequences (see, for instance, Refs. [1,11,12]). Here, in this work, the
classification in purines, and pyrimidines was chosen because its better de-
tection of the long dependence property in DNA sequences (see, for instance,
Refs. [1,11]).

In order to study the properties of a DNA sequence we construct a random walk
in one dimension, based on this classification. In a DNA sequence, if in the position i

one finds a pyrimidine, we give one step upward, otherwise, if a purine is found
we give one step downward (see Ref. [11]). Therefore, we define the function gð�Þ
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such that

gðiÞ ¼
þ1 if i ¼ pyrimidine ;

�1 if i ¼ purine :

(
(6)

After t positions, the random walk is the addition of the gðiÞ steps up to position t,
that is,

X t ¼
Xt

i¼1

gðiÞ .

A FORTRAN routine was written to identify the bases, from a standard text archive,
determining the steps, and the random walk. We have then a time series fX tg

n
t¼1, and

we proceed with a long memory analysis based on this data. In general, the time
series fX tg

n
t¼1 is a sample from a non-stationary stochastic process. In order to obtain

a stationary time series we take a first difference of it denoted by
Y t ¼ X t � X t�1 ¼ ð1�BÞX t; for t 2 N ,

where B is the backward-shift operator. Our goal is to study the long memory
property of the stochastic process fY tgt2N based on ARFIMAð0; d; 0Þ processes. We
want to estimate properly the parameter d when d 2 ð0:0; 0:5Þ. We recall that if
d̂X ¼ 1:2 is an estimator of d, under the stochastic process fX tgt2N, then d̂Y � 0:2,
under the stochastic process fY tgt2N (see Ref. [13]). For the estimation of parameter
d when d 2 ð0:5; 1:5Þ we refer the reader to Ref. [14].
4. Fractional parameter estimation

We now summarize some methods for the estimation of d: the regression methods
using the periodogram function (d̂GPH ), proposed by Geweke and Porter-Hudak in
Ref. [15], and the smoothed version of the periodogram function (d̂SPR), proposed by
Reisen in Ref. [16]; the estimator proposed by Robinson in Ref. [17] (d̂RP) based on
the Geweke, and Porter-Hudak’s method, where the number of regressors in the
regression equation starts from l41 instead of one and its smoothed version
proposed by this work (d̂RSP); and the approximated maximum likelihood estimator
(d̂W ), proposed by Fox, and Taqqu in Ref. [18], based on an idea of [19].

4.1. Estimator d̂GPH

Consider the set of Fourier frequencies wj ¼ 2pj=n, j ¼ 1; . . . ; ½n=2�, where n is the
sample size and ½x� means the integer part of x. By taking the logarithm of the
spectral density function f X ð�Þ, and adding ln f U ð0Þ, and ln IðwjÞ to both sides of
expression (4) we have

ln IðwjÞ ¼ ln f U ð0Þ � d ln 2 sin
wj

2

� �h i2
þ ln

f U ðwjÞ

f U ð0Þ

� �
þ ln

IðwjÞ

f X ðwjÞ

� �
, (7)

where Ið�Þ is the periodogram function.
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The estimator of d is given by

d̂GPH ¼ �

PgðnÞ
j¼1 ðxj � x̄Þðyj � ȳÞPgðnÞ

j¼1 ðxj � x̄Þ2
, (8)

where gðnÞ ¼ na, 0oao1 (see Ref. [15]), yj ¼ ln IðwjÞ, xj ¼ ln½2 sinðwj=2Þ�
2, and

x̄ ¼ ð1=gðnÞÞ
PgðnÞ

j¼1 xj.

4.2. Estimator d̂SPR

The regression estimator d̂SPR is obtained by replacing the periodogram function
in expression (7) by the smoothed periodogram function, f sð�Þ, with the Parzen lag
window. The parameter m in the lag window generator, usually referred to as the
truncation point, is a function of the sample size chosen as m ¼ nb, for 0obo1. The
paper [16] shows that d̂SPR is given by the same expression as in (8), where now
yj ¼ ln f sðwjÞ, for j ¼ 1; . . . ; gðnÞ. The value of gðnÞ is chosen as in the d̂GPH method.

4.3. Estimators d̂RP and d̂RSP

We also consider the estimator proposed in Ref. [17], and its smoothed variation
proposed by this work. The first one, denoted by d̂RP, is a modified version of the
estimator d̂GPH , where the number of regressors gðnÞ, in expression (7), starts from
l41 instead of one (see Ref. [17]). The second one, denoted by d̂RSP, uses the
smoothed version of the periodogram function instead of the periodogram itself.
4.4. Estimator d̂W

This estimator involves the function

QðZÞ ¼
Z p

�p

IðwÞ

f X ðw; ZÞ
dw ,

where f X ð�; ZÞ is the spectral density function of the fX tgt2N, and Z denotes the vector
of unknown parameters. The d̂W estimator is the value of Z which minimizes the
function Qð�Þ (see Ref. [19]). When we are dealing with the situation where p ¼ 0 ¼ q,
Z is given only by the parameter d. For computational purposes, it is easier to
minimize the function

LnðZÞ ¼
1

2n

Xn�1
j¼1

ln f X ðwj; ZÞ þ
IðwjÞ

f X ðwj; ZÞ

� �
instead of Qð�Þ, where wj are the Fourier frequencies, for j ¼ 1; . . . ; n� 1. For general
ARFIMAð0; d; 0Þ Gaussian processes Fox, and Taqqu have shown in Ref. [18] that
the maximum likelihood estimator of d is strongly consistent, and asymptotically
normally distributed.
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5. Confidence intervals construction

In this section we describe the method used for the construction of the empirical
confidence intervals based on the estimators proposed on the previous section. We
follow the ideas in the works [20,21].

We do not use the asymptotic theory of all estimators, instead we wrote a FORTRAN

routine using the method proposed in Ref. [8] to generate an ARFIMAð0; d; 0Þ
process. The steps of this algorithm are given as follows:
(1)
1T

stan
Calculate the partial autocorrelation function jX ðj; jÞ.

(2)
 Generate a random variableNð0; 1Þ, through the subroutine RNNOR,1 of size n, to

simulate a Gaussian white noise fetgt2Z process.

(3)
 Calculate the mean and the variance of the random variable X t, where X t is

obtained from (9) below.

(4)
 Generate a random variable X t, with distribution Nðmt; vtÞ, for t 2 f1; 2; . . . ; ng,

where

mt � EðX tjX ‘; ‘otÞ ¼
Xt

j¼1

jX ðt; jÞX t�j ,

vt � VarðX tjX ‘; ‘otÞ ¼ s2�
Yt

j¼1

ð1� j2
X ðj; jÞÞ ,

where jX ðt; jÞ is the partial autocorrelation of an ARFIMAð0; d; 0Þ process and
s2� is the variance of the white noise process. For more details, see Ref. [22].
Note 1. For the simulations of any ARFIMAð0; d; 0Þ process, we always use s2e ¼
1:0 in expression (3). We observe that these processes are strongly stationary.

From the generation algorithm, given by (1)–(4), we obtain a sample time series
fX tg

n
t¼1 from an ARFIMAð0; d; 0Þ process given by

ð1�BÞdX t ¼ et; for t 2 f1; 2; . . . ; ng ,

where the sample fX tg
n
t¼1 was obtained from the expression

X t ¼ ð1�BÞ�det; for t 2 f1; 2; . . . ; ng . (9)

The next step, after obtaining a time series, is to deal with the estimation of the
fractional parameter d. In this work we use the estimators proposed in Section 4,
namely d̂GPH , d̂SPR, d̂RP, d̂RSP, and d̂W . For this we consider 1000 time series.
For each series we estimate the value of d through the different methods and later
his subroutine belongs to the IMSL FORTRAN library and generates pseudorandom numbers from a

dard normal distribution.
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we take the arithmetic average of these values, that is,

di ¼
1

1000

X1000
j¼1

bdiðjÞ ,

where di corresponds to d̂GPH , d̂SPR, d̂RP, d̂RSP, and d̂W , respectively, depending on
the estimation method used. To compare the different estimators we considered the
mean squared error value, denoted hereafter by MSE, i.e.,

MSE ¼
1

1000

X1000
j¼1

ðbdiðjÞ � dÞ2 ,

where d is the true parameter value.
In Tables 1–4 we present the simulation results for the fractional parameter d 2

f0:05; 0:10; 0:15; 0:45g in ARFIMAð0; d; 0Þ processes, for all estimation methods
proposed here.

We now construct empirical confidence intervals for the fractional parameter
based on the estimation procedures given in Section 4. The process to construct the
empirical confidence intervals consists of the following steps:
(1)
Tab

The

ARF

n

Mea

256

512

1024

2048

4096

8192

MS

256

512

1024

2048

4096

8192
For each sample size n (we use n 2 f256; 512; . . . ; 8192g) we generate 1000
replications.
(2)
 We calculate the lower bound (0.5%, 2.5% and 5.0%) and upper bound (99.5%,
97.5% and 95%) limits of the obtained estimator values. They are denoted by
lower bound and upper bound, respectively.
le 1

mean value and MSE, using different estimators, for different sample sizes n, based on

IMAð0; d; 0Þ with ðd ¼ 0:05Þ

Estimation method ðd ¼ 0:05Þ

d̂GPH d̂SPR d̂RP d̂RSP d̂W

n value

0.0550 0.0091 0.0495 0.0460 0.0353

0.0496 0.0176 0.0468 0.0456 0.0421

0.0530 0.0215 0.0544 0.0403 0.0446

0.0531 0.0340 0.0532 0.0493 0.0481

0.0515 0.0380 0.0529 0.0488 0.0481

0.0482 0.0369 0.0471 0.0441 0.0493

E

0.0436 0.0273 0.0689 0.0384 0.0032

0.0285 0.0182 0.0459 0.0233 0.0014

0.0167 0.0114 0.0237 0.0143 0.0007

0.0112 0.0074 0.0161 0.0089 0.0003

0.0078 0.0051 0.0098 0.0058 0.0002

0.0053 0.0034 0.0066 0.0037 0.0001
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Table 2

The mean value and MSE, using different estimators, for different sample sizes n, based on

ARFIMAð0; d; 0Þ with d ¼ 0:10

n Estimation method ðd ¼ 0:10Þ

d̂GPH d̂SPR d̂RP d̂RSP d̂W

Mean value

256 0.1105 0.0656 0.1023 0.0931 0.0843

512 0.1013 0.0684 0.1012 0.0967 0.0911

1024 0.1091 0.0743 0.0941 0.0964 0.0951

2048 0.1069 0.0790 0.0966 0.0972 0.0969

4096 0.1035 0.0812 0.0970 0.0983 0.0986

8192 0.1071 0.0844 0.1027 0.0951 0.0993

MSE

256 0.0434 0.0293 0.0711 0.0381 0.0033

512 0.0299 0.0209 0.0426 0.0238 0.0015

1024 0.0195 0.0127 0.0244 0.0135 0.0007

2048 0.0111 0.0082 0.0169 0.0091 0.0003

4096 0.0081 0.0052 0.0115 0.0067 0.0002

8192 0.0047 0.0037 0.0061 0.0039 0.0001

Table 3

The mean value and MSE, using different estimators, for different sample sizes n, based on

ARFIMAð0; d; 0Þ with d ¼ 0:15

n Estimation method ðd ¼ 0:15Þ

d̂GPH d̂SPR d̂RP d̂RSP d̂W

Mean value

256 0.1502 0.0983 0.1502 0.1408 0.1327

512 0.1404 0.1041 0.1428 0.1389 0.1418

1024 0.1486 0.1167 0.1509 0.1407 0.1441

2048 0.1495 0.1315 0.1493 0.1497 0.1475

4096 0.1528 0.1347 0.1526 0.1480 0.1487

8192 0.1527 0.1383 0.1534 0.1484 0.1494

MSE

256 0.0436 0.0289 0.0751 0.0385 0.0031

512 0.0295 0.0201 0.0475 0.0236 0.0015

1024 0.0173 0.0120 0.0245 0.0133 0.0006

2048 0.0121 0.0081 0.0164 0.0092 0.0003

4096 0.0078 0.0054 0.0103 0.0059 0.0002

8192 0.0054 0.0036 0.0065 0.0038 0.0001
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(3)
 We construct a graph where the sample sizes are in the abscissa and the obtained
values from step 2 are in the ordinate axis. The values are fitted by a linear
regression method using a MATLAB routine. From the fitted functions we
construct the confidence intervals.
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Table 4

The mean value and MSE, using different estimators, for different sample sizes n, based on

ARFIMAð0; d; 0Þ with d ¼ 0:45

n Estimation method ðd ¼ 0:45Þ

d̂GPH d̂SPR d̂RP d̂RSP d̂W

Mean value

256 0.4705 0.4124 0.4687 0.4825 0.4391

512 0.4601 0.4149 0.4545 0.4638 0.4436

1024 0.4696 0.4344 0.4690 0.4730 0.4491

2048 0.4569 0.4349 0.4552 0.4628 0.4497

4096 0.4635 0.4452 0.4609 0.4664 0.4499

8192 0.4583 0.4452 0.4583 0.4617 0.4501

MSE

256 0.0434 0.0284 0.0737 0.0366 0.0033

512 0.0302 0.0211 0.0473 0.0242 0.0014

1024 0.0190 0.0127 0.0264 0.0147 0.0007

2048 0.0131 0.0090 0.0174 0.0096 0.0003

4096 0.0086 0.0057 0.0106 0.0063 0.0002

8192 0.0057 0.0039 0.0070 0.0041 0.0001
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For instance, to get a confidence interval for parameter d at 95% confidence level, we
plot the values 2.5% and 97.5% of confidence interval versus the time series sample
size n. For these data, the best adjusted function is

hðnÞ ¼ a½log2ðlog2ðnÞÞ
2
� þ b½log2ðlog2ðnÞÞ� þ c

with coefficients a, b, and c estimated by linear regression method using a
MATLAB routine. Figs. 2–5 present the confidence interval for different values
of d 2 f0:05; 0:10; 0:15; 0:45g only at 95% confidence level, based on all esti-
mation procedures considered here, with n 2 f256; 512; . . . ; 8192g. For other
confidence levels, and other different values of d, the results are available upon
request.

One observes in Figs. 2–5 that the obtained values for the estimation of d converge
to the true parameter value as the sample size increases. This result was expected,
since as long as the sample size increases, more precise will be the estimates for d,
independently of the estimation procedure.

With the data used to construct the graph we can approximate functions that
return the estimated value of d for different sample sizes that we choose for the
simulation. Table 5 supplies the confidence intervals for d based on time series with
sample size n belonging to f256; 512; . . . ; 8192g. With this procedure, we obtain the
confidence interval for d based on each estimation method. The upper and lower
bounds of d are calculated when we change N to log2ðlog2ðnÞÞ in the fitted equations
of Tables 5–8.
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Fig. 2. Confidence interval for d ¼ 0:05 at 95% based on the five considered estimation methods and on

six different sample sizes.

Fig. 3. Confidence interval for d ¼ 0:10 at 95% based on the five considered estimation methods and on

six different sample sizes.
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Tables 1–4 show the simulation results for d 2 f0:05; 0:10; 0:15; 0:45g.
One observes that, for the case where d ¼ 0:10, the best result is attained
by d̂W .



ARTICLE IN PRESS

Fig. 4. Confidence interval for d ¼ 0:15 at 95% based on the five considered estimation methods and on

six different sample sizes.

Fig. 5. Confidence interval for d ¼ 0:45 at 95% based on the five considered estimation methods and on

six different sample sizes.
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6. Application

To test the effectiveness of the described procedure in Section 5, we analyze a real
DNA sequence, calculating the confidence interval for all estimators proposed in
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Table 5

Confidence intervals for d ¼ 0:05 at 95%, where N ¼ log2ðlog2ðnÞÞ, with different estimators

Estimator Interval Fitted equation

d̂GPH
Upper bound h ¼ 0:1429N2 � 1:311N þ 3:078

Lower bound h ¼ �0:2635N2 þ 2:160N � 4:485

d̂SPR
Upper bound h ¼ 0:0335N2 � 0:438N þ 1:308

Lower bound h ¼ �0:1589N2 þ 1:433N � 3:210

d̂RP
Upper bound h ¼ 0:1704N2 � 1:654N þ 3:978

Lower bound h ¼ �0:4893N2 þ 3:864N � 7:715

d̂RSP
Upper bound h ¼ 0:1372N2 � 1:273N þ 2:993

Lower bound h ¼ �0:2678N2 þ 2:198N � 4:547

d̂W
Upper bound h ¼ 0:0931N2 � 0:724N þ 1:470

Lower bound h ¼ �0:1334N2 þ 1:042N � 1:997

Table 6

Confidence intervals for d ¼ 0:10 at 95%, where N ¼ log2ðlog2ðnÞÞ, with different estimators

Estimator Interval Fitted equation

d̂GPH
Upper bound h ¼ 0:0881N2 � 0:941N þ 2:521

Lower bound h ¼ �0:1491N2 þ 1:419N � 3:250

d̂SPR
Upper bound h ¼ 0:0711N2 � 0:704N þ 1:843

Lower bound h ¼ �0:0656N2 þ 0:811N � 2:129

d̂RP
Upper bound h ¼ 0:3447N2 � 2:845N þ 6:068

Lower bound h ¼ �0:2062N2 þ 1:923N � 4:362

d̂RSP
Upper bound h ¼ 0:1819N2 � 1:614N þ 3:707

Lower bound h ¼ 0:0704N2 � 0:154N � 0:4058

d̂W
Upper bound h ¼ 0:0921N2 � 0:731N þ 1:553

Lower bound h ¼ �0:1334N2 þ 1:027N � 1:063
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Section 4. We use available sequences in the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov). Chosen a sequence, we use routines
developed in this work to analyze it.

The first routine constructs a random walk (described in Section 3) for this
sequence. From this random walk we use another routine developed in FORTRAN

computational language (see Refs. [23,24]) to estimate d based on the estimation
procedures proposed in Section 4.

In this section, the methodology is applied to the homo sapiens dystrophin
sequence (muscular dystrophy, Duchenne and Becker types) (DMD, transcript

http://www.ncbi.nlm.nih.gov
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Table 7

Confidence intervals for d ¼ 0:15 at 95%, where N ¼ log2ðlog2ðnÞÞ, with different estimators

Estimator Interval Fitted equation

d̂GPH
Upper bound h ¼ 0:2032N2 � 1:691N þ 3:768

Lower bound h ¼ �0:1934N2 þ 1:706N � 3:665

d̂SPR
Upper bound h ¼ 0:1088N2 � 0:929N þ 2:204

Lower bound h ¼ �0:1170N2 þ 1:168N � 2:699

d̂RP
Upper bound h ¼ 0:5444N2 � 4:148N þ 8:210

Lower bound h ¼ �0:4586N2 þ 3:679N � 7:348

d̂RSP
Upper bound h ¼ 0:2434N2 � 1:977N þ 4:256

Lower bound h ¼ �0:2390N2 þ 2:012N � 4:147

d̂W
Upper bound h ¼ 0:0985N2 � 0:758N þ 1:623

Lower bound h ¼ �0:1305N2 þ 1:021N � 1:860

Table 8

Confidence intervals for d ¼ 0:45 at 95%, where N ¼ log2ðlog2ðnÞÞ, with different estimators

Estimator Interval Fitted equation

d̂GPH
Upper bound h ¼ 0:1145N2 � 1:123N þ 3:187

Lower bound h ¼ �0:0933N2 þ 1:040N � 2:262

d̂SPR
Upper bound h ¼ 0:0711N2 � 0:704N þ 2:193

Lower bound h ¼ �0:0716N2 þ 0:842N � 1:813

d̂RP
Upper bound h ¼ 0:2917N2 � 2:470N þ 5:756

Lower bound h ¼ �0:1900N2 þ 1:818N � 3:840

d̂RSP
Upper bound h ¼ 0:2435N2 � 2:018N þ 4:713

Lower bound h ¼ �0:0109N2 þ 0:388N � 0:949

d̂W
Upper bound h ¼ 0:0909N2 � 0:719N þ 1:882

Lower bound h ¼ �0:1779N2 þ 1:343N � 2:102
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variant Dp140bc, mRNA from NCBI #NM 004023). For other applications of
DNA sequences we refer the reader to Ref. [25].

The sequence of this example presents 7048 nucleotides. Fig. 6 shows the plot of
the random walk for this DNA sequence. Table 9 shows the analysis result for all
estimators proposed in Section 4 for this DNA sequence.

Remark 7. The right choice of the number of regressors gðnÞ ¼ na in expre-
ssion (8) gave raise too many works among researchers and practitioners for the
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Fig. 6. Random walk for the homo sapiens dystrophin sequence.

Table 9

Estimation results for d using different estimation methods

Estimation method d̂GPH d̂SPR d̂RP d̂RSP d̂W

d̂i value 0.0922 0.0915 0.0902 0.0928 0.0930

Table 10

Results for the upper and lower bounds for the estimated value of d using different estimation methods

Estimation method d̂GPH d̂SPR d̂RP d̂RSP d̂W

Upper bound 0.2523 0.2158 0.2677 0.2319 0.1104

Lower bound �0.0485 �0.0342 �0.0794 �0.0205 0.9097
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semiparametric estimation of d. For theoretical purpose, gðnÞ is a function of n such
that gðnÞ=n! 0, as n!1. We refer the reader to [4,9,17] for more details.

To calculate the confidence intervals for the estimators we use Table 6. In this
table one finds the fitted equations that allow to evaluate the upper and lower
bounds of the estimators for the considered cases. The results are shown in Table 10
below.

According to Table 10 one observes that the estimated values for d are in between
the limits of the calculated fitted equations, at 95% confidence level (see the upper
and lower bounds in Table 10).
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Table 11

Results for the estimation of d using different values of a

a Estimation method Absolute error

d̂GPH d̂SPR d̂RP d̂RSP d̂W d̂GPH d̂SPR d̂RP d̂RSP

0.50 0.1513 0.1286 0.1137 0.0995 0.0930 0.0584 0.0356 0.0207 0.0065

0.51 0.1485 0.1151 0.1136 0.0865 0.0930 0.0555 0.0221 0.0207 0.0065

0.52 0.1231 0.0887 0.0878 0.0590 0.0930 0.0302 0.0042 0.0052 0.0340

0.53 0.1296 0.0910 0.0979 0.0639 0.0930 0.0366 0.0020 0.0049 0.0291

0.54 0.1355 0.0915 0.1071 0.0666 0.0930 0.0425 0.0015 0.0141 0.0264

0.55 0.1672 0.1212 0.1448 0.1019 0.0930 0.0743 0.0283 0.0519 0.0089

0.56 0.1632 0.1187 0.1421 0.1006 0.0930 0.0702 0.0258 0.0491 0.0076

0.57 0.1551 0.1132 0.1350 0.0960 0.0930 0.0622 0.0202 0.0420 0.0030

0.58 0.1686 0.1217 0.1513 0.1067 0.0930 0.0756 0.0288 0.0583 0.0137

0.59 0.1477 0.1134 0.1299 0.0988 0.0930 0.0548 0.0205 0.0369 0.0059

0.60 0.1475 0.1068 0.1311 0.0928 0.0930 0.0546 0.0138 0.0381 0.0002

0.61 0.1673 0.1102 0.1538 0.0975 0.0930 0.0744 0.0173 0.0608 0.0046

0.62 0.1498 0.0968 0.1359 0.0841 0.0930 0.0568 0.0039 0.0430 0.0089

0.63 0.1358 0.0854 0.1219 0.0728 0.0930 0.0428 0.0076 0.0289 0.0202

0.64 0.1282 0.0881 0.1149 0.0766 0.0930 0.0352 0.0049 0.0219 0.0164

0.65 0.1157 0.0759 0.1026 0.0646 0.0930 0.0227 0.0170 0.0096 0.0284

0.66 0.1093 0.0784 0.0967 0.0680 0.0930 0.0163 0.0146 0.0038 0.0250

0.67 0.0897 0.0672 0.0769 0.0570 0.0930 0.0033 0.0258 0.0160 0.0360

0.68 0.0946 0.0719 0.0831 0.0627 0.0930 0.0017 0.0211 0.0099 0.0303

0.69 0.0825 0.0618 0.0712 0.0528 0.0930 0.0105 0.0312 0.0217 0.0402

0.70 0.0821 0.0631 0.0716 0.0548 0.0930 0.0109 0.0299 0.0213 0.0382

0.71 0.0747 0.0562 0.0647 0.0482 0.0930 0.0182 0.0368 0.0282 0.0448

0.72 0.0762 0.0563 0.0670 0.0489 0.0930 0.0168 0.0367 0.0260 0.0441

0.73 0.0761 0.0565 0.0676 0.0497 0.0930 0.0169 0.0365 0.0254 0.0433

0.74 0.0473 0.0328 0.0383 0.0255 0.0930 0.0456 0.0602 0.0546 0.0675

0.75 0.0444 0.0289 0.0359 0.0220 0.0930 0.0486 0.0641 0.0571 0.0709

0.76 0.0413 0.0309 0.0334 0.0246 0.0930 0.0516 0.0620 0.0596 0.0683

0.77 0.0483 0.0393 0.0411 0.0337 0.0930 0.0447 0.0537 0.0518 0.0592

0.78 0.0442 0.0364 0.0374 0.0312 0.0930 0.0488 0.0565 0.0555 0.0617

0.79 0.0446 0.0389 0.0384 0.0342 0.0930 0.0483 0.0540 0.0546 0.0588

0.80 0.0533 0.0513 0.0478 0.0473 0.0930 0.0396 0.0416 0.0452 0.0457

0.81 0.0515 0.0505 0.0463 0.0467 0.0930 0.0414 0.0425 0.0466 0.0463

0.82 0.0556 0.0555 0.0509 0.0521 0.0930 0.0373 0.0375 0.0421 0.0409

0.83 0.0673 0.0638 0.0632 0.0608 0.0930 0.0256 0.0292 0.0298 0.0322

0.84 0.0638 0.0640 0.0599 0.0612 0.0930 0.0291 0.0289 0.0330 0.0317

0.85 0.0661 0.0652 0.0625 0.0627 0.0930 0.0269 0.0277 0.0305 0.0303

0.86 0.0681 0.0651 0.0648 0.0627 0.0930 0.0248 0.0279 0.0282 0.0303

0.87 0.0745 0.0691 0.0716 0.0669 0.0930 0.0184 0.0238 0.0214 0.0260

0.88 0.0809 0.0759 0.0782 0.0740 0.0930 0.0121 0.0170 0.0148 0.0189

0.89 0.0816 0.0758 0.0791 0.0740 0.0930 0.0113 0.0172 0.0139 0.0190

0.90 0.0834 0.0764 0.0811 0.0747 0.0930 0.0095 0.0166 0.0119 0.0183

0.91 0.0884 0.0835 0.0863 0.0820 0.0930 0.0045 0.0095 0.0067 0.0110

0.92 0.0922 0.0882 0.0902 0.0869 0.0930 0.0008 0.0048 0.0027 0.0061

0.93 0.0918 0.0880 0.0898 0.0866 0.0930 0.0012 0.0050 0.0031 0.0063

0.94 0.0955 0.0841 0.0883 0.0856 0.0930 0.0025 0.0089 0.0047 0.0074

0.95 0.0978 0.0879 0.0869 0.0876 0.0930 0.0048 0.0051 0.0061 0.0054
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7. Conclusion

In this work we analyzed five different estimators for the long memory parameter
d. From all these analyzed estimators, we can observe that d̂W is the estimator that
better behaves. Tables 1, 3, and 4 and Figs. 2, 4, and 5 show that d̂W has lesser
variation among the maximum, and minimum values. Also, d̂W has the smallest
mean squared error, as we can see in Tables 1, 3, and 4. The best estimation
procedure, in the statistical sense, is the maximum likelihood method, hereafter
denoted by d̂W . It is always asymptotically unbiased and normally distributed (see
Refs. [4,9,18,26]). The semiparametric methods (d̂GPH ; d̂SPR; d̂RP, and d̂RSP) are
easier to be implemented and even more flexible, but if one has the information that
the data comes from an ARFIMA model, then the right method to be used is the
maximum likelihood procedure. This is in accordance with the simulation results
obtained in the tables (Table 11).

A question can be asked from the results when we use real data. Which estimator
is the best choice when analyzing DNA sequences? As we noted in the previous
paragraph, d̂W has lesser variation among the maximum, and minimum values and
the smallest mean squared error value. So, if we have to choose a method to estimate
the parameter d in a time series, obtained from an ARFIMAð0; d; 0Þ process, we
must choose the d̂W method.

One can also note that d̂ 2 ð0:0; 0:5Þ for all methods. With this result, we
conjecture that DNA sequences have long range dependence. However, the d̂W

estimator has slow convergence. When one is dealing with large size of observations
in a time series (for instance, DNA sequences with more than 4000 base pairs), the
d̂W estimator takes some minutes to converge, while the other estimators (d̂GPH ,
d̂SPR, d̂W , d̂RP, and d̂RSP) converge more quickly. We believe that this fact is due to
the FORTRAN routines used in this work, since they were not optimized to a statistical
use.
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