ggplot2: An Implementation of the Grammar of Graphics

in R
Data science using R-Software

Marcus Nunes
December 6, 2021

Statistics Department - UFRN

What we will see today

What we will see today

1. Who am I?
2. Motivation
3. Grammar of Graphics
4. ggplot2
5. Conclusions

Who am I?

Who am I?

- Marcus Nunes, Assistant Professor at Statistics Department, Federal University of Rio Grande do Norte
- PhD in Statistics - Pennsylvania State University (2013)
- Interested in Statistical Education, Machine Learning and Statistical Collaboration Projects
- Email: marcus@marcusnunes .me

LISA 2020 Network

link

Motivation

Program
Source: Grolemund and Wickham (2017)

Motivation

Source: KDnuggets

Motivation

- Good statisticians and mathematicians who write code without optimization
- Good computer scientists who understand a little statistics and math
- Geoscientists with data expertise
- Managers who know how to make these people work together

Motivation

- A data scientist is someone who understands programming more than a traditional statistician
- Also, understands statistics more than a traditional Computer Scientist
- And, above all, it is someone who can find solutions to problems by joining these two areas of knowledge

Motivation

- Data science on a programming language makes reproducibility easier
- Why use R?
- According to IEEE, R is the 7th most popular programming language in the world
- R is built by statisticians to statisticians
- It is a natural choice for us

Motivation

- It is lightweight: almost any computer can run it
- Even if your computer cannot run R, you can use an internet browser
- It is the language of choice by many statisticians

Grammar of Graphics

Grammar of Graphics

- ggplot2 is a data visualization package
- It was created by Hadley Wickham in 2005, based on the book Grammar of Graphics, by Leland Wilkinson, but its first version was only available to the public in 2007
- The main idea is to create graphics as if they were phrases in a language, where each graphic element is a word

Grammar of Graphics

- That is, let's work with the concept of grammar of graphics (hence the gg in ggplot2)
- This allows us to build graphics as complex as we want
- Graphics created with this tool are generally more beautiful than traditional R graphics or other similar tools.

Grammar of Graphics

- Each graph consists of seven layers: data, aesthetics, geometry, facets, statistics, coordinates and theme
- The first three are fundamental: every graphic will have them
- data: consist of the base layer; from the data we will think which variables will be worked
- aesthetics: consists of the variables selected for plotting, grouping, coloring, etc.
- geometry: layer where we define the shapes of graphic elements, such as points, lines and intervals

Grammar of Graphics

- The following four are optional: they allow us to customize our views
- facets: useful when we want to split chart information for better visualization, it can be used for group comparisons
- statistics: it is the layer that represents the analysis of the data, if they are transformed
- coordinates: informs where the graph will be built, whether in Cartesian or Polar coordinates, for example
- theme: layer referring to the general view of the chart, changing background colors, axes format, font size and much more.

ggplot2

ggplot2

- Install R: https: //cran.r-project.org/
- Install RStudio:
https://www.rstudio.com/products/rstudio/download/
- Open RStudio and run the following code:
install.packages("tidyverse")

ggplot2

- Our first plot will be made from the mpg dataset

\#\#	manufacturer	model	displ	year	cyl	trans		cty	hwy	fl	class
\#\#	<chr>	<chr>	<dbl>	<int>	<int>	< chr>	<chr>	<int>	<int>	<chr>	<chr>
\#\#	1 audi	a4	1.8	1999		4 auto~	f	18	29	p	comp
\#\#	2 audi	a4	1.8	1999		4 manu~	f	21	29	p	comp
\#\#	3 audi	a4	2	2008		4 manu~	f	20	31	p	comp
\#\#	4 audi	a4	2	2008		4 auto~	f	21	30	p	comp
\#\#	5 audi	a4	2.8	1999		6 auto~	f	16	26	p	comp
\#\#	6 audi	a4	2.8	1999		6 manu~	f	18	26	p	comp
\#\#	7 audi	a4	3.1	2008		6 auto~	f	18	27	p	comp
\#	8 audi	a4 quattro	1.8	1999		4 manu~	4	18	26	p	comp
\#\#	9 audi	a4 quattro	1.8	1999		4 auto~	4	16	25	p	comp
\#\#	10 audi	a4 quattro	2	2008		4 manu~	4	20	28	p	comp

```
## # ... with 224 more rows
```


ggplot2

- Think about the variables hwy (consumption in miles per gallon on the road) and displ (size of car engine, in liters)
- What happens to the consumption of the car when the engine size in liters increases?
-Does this make sense according to your intuition?

ggplot2

```
# loading the ggplot2 package
library(ggplot2)
# hwy x displ scatter plot
ggplot(mpg, aes(x = displ, y = hwy)) +
    geom_point()
```


ggplot2

ggplot2

- See that there are some dots highlighted in red in the image below. They seem to run away from the linear behavior of the other points in the dataset.

ggplot2

- Note that we are able to generate a more sophisticated graph if we change the code we've used so far

```
# hwy x displ scatter plot with caption
ggplot(mpg, aes(x = displ, y = hwy)) +
    geom_point(aes(colour = class))
```


ggplot2

class

- 2seater
- compact
- midsize
- minivan
- pickup
- subcompact
- suv

ggplot2

- We are not limited to using only colors to identify the different types of cars
- Shapes are a good option too, specially if you plan to print you plot in black and white

```
# hwy x displ scatter plot with caption
ggplot(mpg, aes(x = displ, y = hwy)) +
    geom_point(aes(shape = class))
```


ggplot2

class

- 2seater
- compact
- midsize
+ minivan
® pickup
* subcompact suv

ggplot2

- From the list of the seven main components of each graph, we've already seen how to work with data, aesthetics and geometry
- We still have to see how to add facets, statistics, coordinates and theme to our product
- We'll start with the facets
- See the next chart, divided into panels

ggplot2

```
ggplot(mpg, aes(x = displ, y = hwy)) +
    geom_point() +
    facet_wrap(~class)
```

ggplot2

ggplot2

- Note that we managed to improve the visualization of our dataset compared to what we had before (at least it's easier to visualize each level of the class variable)
- It is possible to change the organization of the panels very easily

```
ggplot(mpg, aes(x = displ, y = hwy)) +
    geom_point() +
    facet_wrap(~ class, ncol = 2)
```


ggplot2

ggplot2

- How to explain what is happening on the chart below?

```
ggplot(mpg, aes(x = displ, y = hwy)) +
    geom_point() +
    geom_smooth()
```


ggplot2

ggplot2

- The graph uses a curve to describe the behavior of the data
- With it, it's easier to assess trends
- Understand what happens if we want to separate the cars according to their type of vehicle

ggplot2

$$
\begin{aligned}
& \operatorname{ggplot}(m p g, \text { aes }(x=\text { displ, } y=\text { hwy }))+ \\
& \quad \operatorname{geom} \text { _smooth }(\text { aes }(\text { colour }=\operatorname{drv}))
\end{aligned}
$$

ggplot2

ggplot2

- Note that ggplot2 allows us to combine different geometries on the same graph:

```
ggplot(mpg, aes(x = displ, y = hwy)) +
    geom_point(aes(colour = drv)) +
    geom_smooth(aes(colour = drv))
```


ggplot2

ggplot2

- It is possible to simplify the code above by placing a global declaration for the colors of both the points and the trend curves:
ggplot(mpg, aes (x = displ, $y=h w y, ~ c o l o r ~=~ d r v)) ~+~$ geom_point() +
geom_smooth()

ggplot2

ggplot2

- Let's assume that the aesthetic result obtained with the graphics we have obtained so far is not to your liking
- For example, suppose you don't like the gray background
- It's very easy to change this by applying themes to our graphics

ggplot2

```
ggplot(mpg, aes(x = displ, \(y=h w y, ~ c o l o u r ~=~ d r v)) ~+~\)
    geom_point() +
    theme_bw()
```


ggplot2

ggplot2

```
ggplot(mpg, aes(x = displ, y = hwy, colour = drv)) +
    geom_point() +
    theme_dark()
```


ggplot2

ggplot2

```
library(ggthemes)
ggplot(mpg, aes(x = displ, y = hwy, colour = drv)) +
    geom_point() +
    theme_economist()
```


ggplot2

Conclusions

Conclusions

- I hope this was a nice introduction to ggplot and R language
- With a proper instructor and material, learn R is simpler than it seems

Contact

Contact

- Marcus Nunes
- Email: marcus@marcusnunes.me

