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Abstract. This paper describes and discusses our vision to develop and
reason about best practices and novel ways of curating data-centric geo-
sciences knowledge (data, experiments, models, methods, conclusions,
and interpretations). This knowledge is produced from applying statis-
tical modelling, Machine Learning, and modern data analytics methods
on geo-data collections. The problems address open methodological ques-
tions in model building, models’ assessment, prediction, and forecasting
workflows.

1 Introduction

Massive data production is a critical aspect of experimental sciences. It has not
been different for geoscience. Examples of geoscientific data include any physical
observable related to the energy industry, mining, monitoring hazardous areas
(e.g. effects of salt mining in populated areas), etc. Nowadays, with the relative
facility and lowering the cost to collect data, the data processing to exploit their
value is a challenge. It requires expertise in data maintenance and processing,
data analysis, and the design of experiments of target domains for which data
will provide insight and knowledge.

This paper describes and discusses our vision to develop and reason about
best practices and novel ways of curating [12] data-centric geosciences knowl-
edge (data, experiments, models, methods, conclusions, and interpretations).
This knowledge is produced from applying statistical modelling, Machine Learn-
ing, and modern data analytics methods on geo-data collections. The problems
address open methodological questions in model building, models’ assessment,
prediction, and forecasting workflows.

This work is funded by the project ADAGEO, IEA CNRS collaboration with Federal
University of Rio Grande do Norte https://adageo.github.io.

c© Springer Nature Switzerland AG 2022
H. Hacid et al. (Eds.): ICSOC 2021 Workshops, LNCS 13236, pp. 244–251, 2022.
https://doi.org/10.1007/978-3-031-14135-5_20



Data Centred Intelligent Geosciences 245

This paper is organised as follows. Section 2 discusses related work regard-
ing existing disaggregated data centres approaches and data science workflow
execution. Section 3 describes our vision and research challenges and oppor-
tunities of data centred smart geosciences. Section 4 describes examples of use
cases addressed through data centred strategies using mathematical and Machine
Learning or artificial intelligence algorithms. Section 5 concludes the paper and
discusses future work.

2 Related Work

In France, portals like SISMER1 and Form@Ter2 are initiatives willing to share
data about target observation in geosciences and then share analytics experi-
ments results. Data Terra3 is a research infrastructure dedicated to Earth Sys-
tem observation data. In general, the objective of these platforms and portals is
to facilitate access to satellite, airborne and in-situ data collected and managed
by research laboratories or federative structures, by national infrastructures, the
oceanographic fleet, aircraft, balloons, and by space missions (e.g., Data Terra).
They manage, archive, and share TB of data. For example, Data Terra repre-
sented 50,000 TB in 2017 and is estimated to reach 100,000 TB by 2022. Beyond
multi-source data, they also share products and services through a unified por-
tal. Data is curated with metadata, included under accepted standards like the
European standard INSPIRE. The challenge is to define common bases for all
data producers and make the data sets interoperable so that their resources are
consistent, shareable, exploitable, and, in a multidisciplinary approach, required
to study the Earth. In this sense, the ODATIS Ocean Cluster offers several
services for data producers similar to data labs for referencing, hosting, dissem-
ination and interoperability. They also provide access to computing services for
running experiments (models) that require important computing resources.

At the European level, actions adopting a data science perspective, for exam-
ple, the project EPOS4 and the Alan Turing Institute extend these initiatives to
European partners willing to take full advantage of the possibilities provided by
analytics and data science to run experiments and contribute to solving leading
problems addressed by the discipline. Indeed, with the advent of digital tech-
nologies, libraries proposing analytics models have been run on mainframes and
high-performance computing centres (HPC) to produce visualisation, modelling
and simulation systems to accelerate interpretation and planning.

Brazilian scientific agenda has widely installed and developed data centres
like https://www.eveo.com.br/en/ and https://baxtel.com/data-center/brazil-
brasil. These data centres aim to provide mainly large-scale computing resources
to run experiments, for example, those regarding geosciences, particularly those
key for the national economies in France and Brazil in oil and hydrocarbon
exploitation, extraction of minerals, and its interaction with populated areas.
1 https://data.ifremer.fr/SISMER/Missions.
2 https://www.poleterresolide.fr.
3 https://www.data-terra.org.
4 https://www.epos-ip.org.
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3 Towards Smart Data Centred Geosciences

Lately, geoscience researchers have been discovering the power of Machine Learn-
ing in solving problems in their field. Bergen et al. [2], for example, show that
random forests were used on continuous acoustic emission in a laboratory shear
experiment to model instantaneous friction and to predict time-to-failure [7,10]
surveyed the applications of Machine Learning in seismology and presented five
research areas in in which Machine Learning classification, regression, clustering
algorithms show promise: earthquake detection and phase picking, earthquake
early warning (EEW), ground-motion prediction, seismic tomography, and earth-
quake geodesy. In exploration geophysics, Machine Learning has been used in
seismic data processing and reservoir characterization [6,9]. Clustering methods
were used to identify key geophysical signatures and determine their relationship
to rock types for geological mapping in the Brazilian Amazon [4]. However, many
researchers in the area are still not prepared to take advantage of data-driven
approaches to their analyses at scale. In this context existing projects and actions
are emerging to provide specialized portals and systems that can encourage the
sharing of collected data (observations), experiments, and analytics results that
should even promote reproducibility.

In this context, we can see the emergence of multidisciplinary teams to col-
laborate in the search for computational solutions. These teams are formed by
experts in geology/geosciences, computer science, statistics and physics, among
others. The work of these teams usually relies on the use of mathematical/com-
putational tools to process large amounts of data. Big data analytical techniques
and Machine Learning has been used with success.

Many scientists and companies believe that they can generate fresh insight,
reduce decision cycle times and steal a march on their competition by automating
the search for patterns and relationships in their data. Therefore, geophysics and
data science, including algorithms, mathematical models and computing, must
converge for developing experiments for obtaining insight and foresight about the
observations contained in data collections. Experiments represent best practices
for addressing problems and questions on geophysics that must be treated as
data and knowledge to be shared and reused by scientists and practitioners.

Data collections issued in situ observations shared in pivot formats are vital
for developing experiments that can lead to relevant governmental, economic,
and social decision making. Information about how these data have been col-
lected, used, curated, and maintained, including the conditions in which analyses
are run and associated results and their use to lead to specific policies, should
be managed and shared.

Merging data-centric techniques with modelling and simulation to answer
questions in geoscience and make timely, clever, and disruptive decisions can
lead to a new geoscience perspective that will benefit from data curation and
analytics. In our vision, three important directions can be considered described
in the following lines.
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Collected Data, Models and Knowledge Integration. A wide variety of geophysi-
cal data (potential fields, electromagnetic data, seismic data, weather data, etc.)
has been acquired with extensive wavelength ranges from surface sensor arrays,
drilled wells, satellites and many other sources. These data sets are among the
most significant science data sets in use, comparable in size and complexity only
to those from astronomy and particle physics. Integrating access to data collec-
tions and their curated versions under a global knowledge graph can promote its
maintenance, analysis, and experimentation. It can also show the knowledge of
the discipline with its vocabulary, concepts, and relations in a synthetic manner.
Inspired by existing public data labs like Kaggle or CoLab of Google, it can
be essential to work to extend existing portals. These portals can be revisited
towards specialized data science labs on geosciences. Through these labs, scien-
tists and practitioners can share raw data, models, and experiments’ return of
experience and run and reproduce other experiments with almost no require-
ment of interacting with specialized engineering support for accessing CPU and
GPU clusters.

Curation, maintenance, exploration of data collections for bringing value to
petabytes of data produced from in situ observations and also from experiments.
Given that data act as a backbone in modelling phenomena for understanding
their behaviour, it is critical to developing good collection and maintenance:
which are available data collections? Are they complete? Which is their prove-
nance? In which conditions were they collected? have they been processed? In
which cases have they been used, and what are the associated results?

Data curation is a set of techniques to process (raw, distributed, heteroge-
neous) data to extract their value. It proposes methods to explore data collec-
tions using well-adapted data structures like graphs that can be explored and
enriched while new data and analytics results are produced. Data curation means
also keeping track of the type of experiments run on data, their results, and the
conditions in which they were performed.

Maintaining a catalogue of questions and experiments related to data can
help provide a new vision of data and the scientific community’s knowledge.
This catalogue can extend existing meta-data and associated data collections
information provided by actions like ODATIS and Data Terra.

Modelling and Simulating Experiments to Answer Questions in Geoscience and
Make Timely Decisions. Both data sources and models come with recognized
issues that existing methodologies have difficulties coping with but which novel
data science-based approaches can address. For example, features for which exact
physical models are unknown (e.g., subsurface geology, earthquakes) or models
that are difficult to reconcile (e.g., seismic measurements vs social media alerts).
This will imply:

– Designing ad hoc experiment programming languages for enabling friendly,
context-aware, and declarative construction of complex experiments in geo-
sciences.
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– Enabling the execution of experiments fusing different data collocations at
different scales to maintain data, prepare experiments, and manage associated
results.

– Programming experiments
• Applying statistical methods to investigate and unveil new patterns in
geophysical data, answering open problems, or leading to further research
questions.

• Building predictive models to describe better or approximate geophysical
phenomena, increasing the knowledge about our planet.

• Parallelizing algorithms for processing geophysical data, thus, allowing
for the processing of very large data sets in reasonable times.

Discussion. From the Geophysics point of view, proposing best practices and
ad-hoc strategies for developing data centred experiments to solve geosciences
problems will impact different vital areas of the economy. For example, oil com-
panies that ride this wave will significantly increase the current productivity of
their knowledge workers, optimize business processes, and reduce operational
costs in a way that is not possible through incremental change. Some compa-
nies now use algorithms to define optimal drilling locations, using automated or
semi-automated systems that deliver results on much shorter cycle times than
traditional methods.

From the Data Science/Data Processing perspective, this kind of multidisci-
plinary research can provide the ground to devise new data curation techniques,
to propose a domain-specific query language, or to define new methods for pro-
cessing heterogeneous data [11]. In addition, statistical knowledge is essential for
extracting information from the massive amount of data we will process. New
methods and models will be crucial to model data and make conclusions in a
timely fashion [13].

4 Use Cases

To illustrate the type of data analytics challenges introduced by geosciences prob-
lems, we describe in this section three examples. These use cases can be solved
with different techniques and can call for data science strategies for specifying
solutions and deploying them in target architectures.

Estimating the Approximate Earthquake Epicentres. The understanding of earth-
quake occurrence in intraplate areas has been one of the most challenging tasks
in Seismology [5]. Compared to border plate regions, interplate areas suffer less
attenuation of seismic waves. As a consequence, a significant hazard may rise
from moderate magnitude earthquakes. Understanding the earthquake generat-
ing mechanisms depends on assessing the stress field in the intraplate areas.

Seismic stations collect signals that can represent earthquakes produced in a
specific area. The challenge is to determine whether signals represent earthquakes
in such a case compute the epicentres. For addressing the challenge, it is possible
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to use mathematical, Machine Learning or artificial intelligence methods [8].
The first task to address this question is to compute the earthquake epicentre’s
direction using the sensor’s initial movement polarity when the waves P and S
are discovered. Then, compute the distance considering how the sensor moves
from North-South (it should be the same as the East-West), as shown in Fig. 1.

Fig. 1. Sensor movement.

Estimation of Stacking Velocity Using CDP Semblance. Semblance analysis is
a technique used in the study and refinement of seismic data. Along with other
methods, this technique enables the improvement of the resolution of data, even
in the presence of background noise. The data yielded by semblance analysis
tends to be easier to interpret when discovering the underground structure of an
area (see Fig. 2).

Estimating the stacking velocities is one of the essential steps in the CMP
(Common Mid Point) seismic processing. This is because the better the estima-
tion of the stacking velocities, the better the quality of the zero-offset section
obtained. Currently, the most convenient velocity analysis method consists of
manually picking the stacking velocities in the velocity spectrum, using the sem-
blance as a coherence measure. The semblance gives us a measure of multichan-
nel coherence. It is necessary to define an analytics workflow with the following
phases to perform this task: (i) transform the CDP or CMP gathered traces
from the offset and time coordinates into the coherence semblances in coordi-
nates of time and stacking velocities. (ii) Pick local maxima of these coherence
semblances and assign zero offset time and corresponding stacking velocities.
(iii) Correct the CDP or CMP gathers for normal moveout (NMO).

Denoising Data from Sensors. The Brazilian Seismographic Network (RSBR)
operates since 2011. Station installation began in 2011 in southeast (SE) Brazil
and finished in 2014 in the Amazon forest. The network integrates 84 stations (as
of December 2017) operated by four institutions in different regions of Brazil.
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Fig. 2. NMO correction after velocity picking on the semblance. Source: [1]

Seismic stations collect signals that can represent earthquakes produced in a
specific area. This data usually contains noise produced by the context where
the sensor is placed and by the technology of the sensor itself. The challenge is to
filter this data to make it ready to be analyzed. This consortium is responsible
for the Brazilian Seismic Bulletin [3].

5 Conclusions and Future Work

This paper proposes our vision about the multidisciplinary agenda for develop-
ing data centred solutions for geosciences problems. The amount of data col-
lected through observing the Earth and its geophysical phenomena call for agile
data and knowledge curation techniques to manage both data, experiments, and
results. The research agenda includes (i) integrating and describing data col-
lected with different technology, (ii) estimating its quality, and preparing it to
be used as input of different methods. Research on smart data centred geo-
science also calls for curation tasks, including data tracking the way data is
cleaned, the experiments that use it and the obtained results. Exploration meth-
ods and systems must be associated with curated data and knowledge to facilitate
an agile understanding of this content. Finally, execution environments provid-
ing computing resources necessary for setting and deploying experiments are
vital for promoting multidisciplinary global experimental sciences. The research
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performed within the project ADAGEO5 is willing to address these problems
through a Brazilian and French collaborative community.
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5. Fonsêca, J., Ferreira, J., do Nascimen, A., Bezerra, F., Neto, H.L., de Menezes,
E.: Intraplate earthquakes in the Potiguar basin, Brazil: evidence for superposi-
tion of local and regional stresses and implications for moderate-size earthquake
occurrence. J. South Am. Earth Sci. 110, 103370 (2021)

6. Jia, Y., Ma, J.: What can machine learning do for seismic data processing? An
interpolation application. Geophysics 82(3), V163–V177 (2017)

7. Kong, Q., Trugman, D.T., Ross, Z.E., Bianco, M.J., Meade, B.J., Gerstoft, P.:
Machine learning in seismology: turning data into insights. Seismol. Res. Lett.
90(1), 3–14 (2019)

8. Leandro, W.P., Santana, F.L., Carvalho, B.M., do Nascimento, A.F.: Parallel
source scanning algorithm using GPUS. Comput. Geosci. 140, 104497 (2020)

9. Li, S., Huang, X., Cao, H.: Seismic data prediction lithology sequence model based
on machine learning. In: SEG 2018 Workshop: Reservoir Geophysics, Daqing,
China, 5–7 August 2018, pp. 249–251. Society of Exploration Geophysicists and
the Chinese Geophysical Society (2020)

10. Rouet-Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C.J., John-
son, P.A.: Machine learning predicts laboratory earthquakes. Geophys. Res. Lett.
44(18), 9276–9282 (2017)

11. Vargas-Solar, G., Farokhnejad, M., Espinosa-Oviedo, J.: Towards human-in-the-
loop based query rewriting for exploring datasets. In: Proceedings of the Workshops
of the EDBT/ICDT 2021 Joint Conference (2021)

12. Vargas-Solar, G., Kemp, G., Hernández-Gallegos, I., Espinosa-Oviedo, J., Da Silva,
C.F., Ghodous, P.: Demonstrating data collections curation and exploration with
curare. In: EDBT/ICDT Conference 2019, p. 4 (2019)

13. Vargas-Solar, G., Zechinelli-Martini, J.-L., Espinosa-Oviedo, J.A.: Enacting data
science pipelines for exploring graphs: from libraries to studios. In: Bellatreche, L.,
et al. (eds.) TPDL/ADBIS -2020. CCIS, vol. 1260, pp. 271–280. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-55814-7 23

5 https://adageo.github.io funded by the IEA program of the French CNRS.


